Lecture 7

Instructor: Quanquan Gu Date: September $14^{\text {th }}$

We continue to illustrate the application of second-order condition for convex functions with more examples.

Example 1 (Quadratic over Linear Function)

$$
f(x, y)=\frac{x^{2}}{y}, y>0
$$

$f(x, y)$ is convex over $\mathbb{R} \times(0,+\infty)$. To show this, we first calculate the partial derivatives. The first order partial derivatives are:

$$
\frac{\partial f(x, y)}{\partial x}=\frac{2 x}{y}, \quad \frac{\partial f(x, y)}{\partial y}=-\frac{x^{2}}{y^{2}} .
$$

The second order partial derivatives of $f(x, y)$ are:

$$
\frac{\partial^{2} f(x, y)}{\partial x^{2}}=\frac{2}{y}, \quad \frac{\partial^{2} f(x, y)}{\partial y^{2}}=\frac{2 x^{2}}{y^{3}}, \quad \frac{\partial^{2} f(x, y)}{\partial x \partial y}=-\frac{2 x}{y^{2}} .
$$

Then we can write down the Hessian matrix of $f(x, y)$ as:

$$
\nabla^{2} f(x, y)=\left[\begin{array}{cc}
\frac{2}{y} & -\frac{2 x}{y^{2}} \\
-\frac{2 x}{y^{2}} & \frac{2 x^{2}}{y^{3}}
\end{array}\right]
$$

Factoring out $2 / y^{3}$, we can achieve:

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{cc}
y^{2} & -x y \\
-x y & x^{2}
\end{array}\right] .
$$

Note that the matrix can be factorized as the outer product of two vectors, yielding

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\binom{y}{-x}(y,-x)
$$

where we notice that:

$$
\binom{y}{-x}(y,-x) \succeq 0
$$

Therefore we have:

$$
\nabla^{2} f(x, y) \succeq 0
$$

By the second order condition, we know that $f(x, y)$ is convex.

Example 2 (Log-sum-exponential Function) $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined as follows

$$
\begin{equation*}
f(\mathbf{x})=\log \left[\sum_{i=1}^{d} \exp \left(x_{i}\right)\right] \tag{1}
\end{equation*}
$$

It is a convex function.
Example 3 (Geometric Mean) $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined as follows

$$
\begin{equation*}
f(\mathbf{x})=\left[\prod_{i=1}^{d} x_{i}\right]^{1 / d} \tag{2}
\end{equation*}
$$

It is a concave function.
For convex function, we can show that its local minimum is also a global minimum. In detail, the following theorem shows that, a local minimum of a convex function is also a global minimum.

Theorem 1 (Local Minimum is also a Global Minimum) Let $f \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex. If \mathbf{x}^{*} is a local minimum of f over a convex set \mathcal{D}, then \mathbf{x}^{*} is also a global minimum of f over a convex set \mathcal{D}.

Proof: Since \mathcal{D} is a convex set, for any $\mathbf{y}, \mathbf{y}-\mathbf{x}^{*}$ is a feasible direction. Since \mathbf{x}^{*} is a local minimum, for any $\mathbf{y} \in \mathcal{D}$, we can choose a small enough $\alpha>0$, such that

$$
\begin{equation*}
f\left(\mathbf{x}^{*}\right) \leq f\left(\mathbf{x}^{*}+\alpha\left(\mathbf{y}-\mathbf{x}^{*}\right)\right) . \tag{3}
\end{equation*}
$$

Furthermore, since f is convex, we have

$$
\begin{equation*}
f\left(\mathbf{x}^{*}+\alpha\left(\mathbf{y}-\mathbf{x}^{*}\right)\right)=f\left(\alpha \mathbf{y}+(1-\alpha) \mathbf{x}^{*}\right) \leq \alpha f(\mathbf{y})+(1-\alpha) f\left(\mathbf{x}^{*}\right) \tag{4}
\end{equation*}
$$

Combining (3) and (4), we have

$$
f\left(\mathbf{x}^{*}\right) \leq \alpha f(\mathbf{y})+(1-\alpha) f\left(\mathbf{x}^{*}\right)
$$

which implies that $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{y})$. Since \mathbf{y} is an arbitrary point in \mathcal{D}, this immediately proves that \mathbf{x}^{*} is a global minimum.

Theorem 2 (First-order Condition for a Global Minimum) Let function $f: \mathbb{R}^{d} \rightarrow$ \mathbb{R} be convex and continuously differentiable. \mathbf{x}^{*} is a global minimum of f over a convex set \mathcal{D} if and only if,

$$
\begin{equation*}
\nabla f\left(\mathbf{x}^{*}\right)^{\top}\left(\mathbf{x}-\mathbf{x}^{*}\right) \geq 0, \quad \text { for all } \quad \mathbf{x} \in \mathcal{D} \tag{5}
\end{equation*}
$$

Proof: " \Rightarrow "
Since \mathbf{x}^{*} is a global minimum, \mathbf{x}^{*} must also be a local minimum. By the first order necessary condition of a local minimum, we have $\nabla f\left(\mathbf{x}^{*}\right)^{\top} \mathbf{d} \geq 0$ where \mathbf{d} is a feasible direction. For any $\mathbf{x} \in \mathcal{D}, \mathbf{d}=\mathbf{x}-\mathbf{x}^{*}$ is a feasible direction. Then we obtain:

$$
\nabla f\left(\mathbf{x}^{*}\right)^{\top}\left(\mathbf{x}-\mathbf{x}^{*}\right) \geq 0
$$

Thus, this completes the proof in the forward direction.
" \Leftarrow "
By definition, we have that:

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)^{\top}\left(\mathbf{x}-\mathbf{x}^{*}\right) \text { for any } \mathbf{x} \in \mathcal{D} .
$$

Thus, if $\nabla f\left(\mathbf{x}^{*}\right)^{\top}\left(\mathbf{x}-\mathbf{x}^{*}\right) \geq 0$, then $f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \geq \nabla f\left(\mathbf{x}^{*}\right)^{\top}\left(\mathbf{x}-\mathbf{x}^{*}\right) \geq 0$, which means \mathbf{x}^{*} is a global minimum of f over \mathcal{D}.

In the following, we will show another way to prove that a function is convex. First of all, let's introduce the restriction of a function to a line.

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function. The restriction of f to a line $\mathbf{x}+t \mathbf{v}$ is defined as $g: \mathbb{R} \rightarrow \mathbb{R}: g(t)=f(\mathbf{x}+t \mathbf{v})$, where $\operatorname{dom}(g)=\{t: \mathbf{x}+t \mathbf{v} \in \operatorname{dom}(f)\}$.

Theorem 3 (Restriction of a convex function to a line) $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a convex function if and only if the function $g: \mathbb{R} \rightarrow \mathbb{R}: g(t)=f(\mathbf{x}+t \mathbf{v}), \operatorname{dom}(g)=\{t: \mathbf{x}+t \mathbf{v} \in$ $\operatorname{dom}(f)\}$ is convex for any $\mathbf{x} \in \operatorname{dom}(f), \mathbf{v} \in \mathbb{R}^{d}$

Proof: " \Rightarrow ": f is convex $\rightarrow g$ is convex.
For any $t_{1}, t_{2} \in \operatorname{dom}(g)$ and any $\alpha \in[0,1]$, we have

$$
\begin{aligned}
g\left(\alpha t_{1}+(1-\alpha) t_{2}\right) & =f\left(\mathbf{x}+\left(\alpha t_{1}+(1-\alpha) t_{2}\right) \mathbf{v}\right) \\
& =f\left(\alpha \mathbf{x}+\alpha t_{1} \mathbf{v}+(1-\alpha) \mathbf{x}+(1-\alpha) t_{2} \mathbf{v}\right) \\
& =f\left(\alpha\left(\mathbf{x}+t_{1} \mathbf{v}\right)+(1-\alpha)\left(\mathbf{x}+t_{2} \mathbf{v}\right)\right)
\end{aligned}
$$

Since $f(\mathbf{x})$ is convex, it then follows that

$$
\begin{aligned}
g\left(\alpha t_{1}+(1-\alpha) t_{2}\right) & \leq \alpha f\left(\mathbf{x}+t_{1} \mathbf{v}\right)+(1-\alpha) f\left(\mathbf{x}+t_{2} \mathbf{v}\right) \\
& =\alpha g\left(t_{1}\right)+(1-\alpha) g\left(t_{2}\right),
\end{aligned}
$$

where the last equality follows by the definition of $g(t)$. Thus, by definition, $g(t)$ is convex.

$$
" \Leftarrow " g \text { is convex } \rightarrow f \text { is convex. }
$$

For any $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$ and any $\alpha \in[0,1]$, we want to show

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y}) .
$$

Let $\mathbf{v}=\mathbf{y}-\mathbf{x}$, and consider $g(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))$. It is easy to verify that $g(0)=f(\mathbf{x})$, $g(1)=f(\mathbf{y})$, and $g(1-\alpha)=f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})$. We then have

$$
\begin{align*}
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) & =g(1-\alpha) \tag{6}\\
& =g(\alpha 0+(1-\alpha) \cdot 1) \\
& \leq \alpha g(0)+(1-\alpha) g(1) \\
& =\alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y}) .
\end{align*}
$$

Therefore, by definition, $f(\mathbf{x})$ is a convex function.
Theorem 3 basically suggests that a function is convex if and only if the restriction of this function to any lines is convex. It enables us to check convexity of f by checking convexity of functions of one variable.

